Applications of James–Stein Shrinkage (II): Bias Reduction in Instrumental Variable Estimation

نویسنده

  • Jann Spiess
چکیده

In a two-stage linear regression model with Normal noise, I consider James–Stein type shrinkage in the estimation of the first-stage instrumental variable coefficients. For at least four instrumental variables and a single endogenous regressor, I show that the standard two-stage least-squares estimator is dominated with respect to bias. I construct the dominating estimator by a variant of James–Stein shrinkage in a first-stage high-dimensional Normal-means problem followed by a control-function approach in the second stage; it preserves invariances of the structural instrumental variable equations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bias Reduction in Instrumental Variable Estimation through First-Stage Shrinkage

The two-stage least-squares (2SLS) estimator is known to be biased when its first-stage fit is poor. I show that better first-stage prediction can alleviate this bias. In a two-stage linear regression model with Normal noise, I consider shrinkage in the estimation of the first-stage instrumental variable coefficients. For at least four instrumental variables and a single endogenous regressor, I...

متن کامل

Applications of James–Stein Shrinkage (I): Variance Reduction without Bias

In a linear regression model with homoscedastic Normal noise, I consider James–Stein type shrinkage in the estimation of nuisance parameters associated with control variables. For at least three control variables and exogenous treatment, I show that the standard leastsquares estimator is dominated with respect to squared-error loss in the treatment effect even among unbiased estimators and even...

متن کامل

Unbiased Shrinkage Estimation

Shrinkage estimation usually reduces variance at the cost of bias. But when we care only about some parameters of a model, I show that we can reduce variance without incurring bias if we have additional information about the distribution of covariates. In a linear regression model with homoscedastic Normal noise, I consider shrinkage estimation of the nuisance parameters associated with control...

متن کامل

Positive-Shrinkage and Pretest Estimation in Multiple Regression: A Monte Carlo Study with Applications

Consider a problem of predicting a response variable using a set of covariates in a linear regression model. If it is a priori known or suspected that a subset of the covariates do not significantly contribute to the overall fit of the model, a restricted model that excludes these covariates, may be sufficient. If, on the other hand, the subset provides useful information, shrinkage meth...

متن کامل

Shrinkage methods for instrumental variable estimation∗

This paper proposes shrinkage methods for instrumental variable estimation to solve the “many instruments” problem. Even though using a large number of instruments reduces the asymptotic variances of the estimators, it has been observed both in theoretical works and in practice that in finite samples the estimators may behave very poorly if the number of instruments is large. This problem can b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017